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The algorithms available today that use dipolar coupling data for
macromolecular structure determination require the independent
determination of two parameters, DP Q

a and R. Methods exist for
obtaining these parameters when the set of dipolar couplings avail-
able is large and the orientations of the interatomic vectors on which
they report is isotropically distributed. These methods are less sat-
isfactory when the set is small and anisotropic. Described here is a
maximum likelihood method that extracts accurate values for DP Q

a

and R from small, anisotropic data sets. Also demonstrated is a pro-
cedure for estimating the errors associated with the values of DP Q

a

and R obtained and for incorporating these errors into refinement
protocols. C© 2001 Academic Press

Key Words: NMR; rhombicity; dipolar coupling; maximum like-
lihood.
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INTRODUCTION

Dipolar coupling data are potentially of great use to NM
spectroscopists since they contain long range information (a
posed to NOE and scalar couplings). Since, however, the dip
coupling of an isotropically tumbling molecule averages to ze
useful dipolar coupling data was, until recently, only availa
for the small number of paramagnetic proteins (1), and protein–
DNA complexes (2) that align spontaneously in strong magne
fields. The recent introduction of liquid crystal media that indu
tunable levels of physical alignment, such as phospholipid m
tures (3), filimentous phage (4, 5), and purple membranes (6),
should allow dipolar coupling data to be collected from ess
tially all nucleic acids and proteins.

The dipolar coupling between two nuclei is given by

DP Q(θ, φ) = DP Q
a [(3 cos2 θ − 1)+ 1.5Rsin2 θ cos 2φ], [1]

whereDP Q
a subsumes the gyromagnetic ratios of the two nuc
1 To whom correspondence should be addressed at Department of Chem
Yale University, P.O. Box 208107, New Haven, CT 06520. E-mail: moore
neutron.chem.yale.edu.
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the order parameter, the dependence on the distance be
nuclei, etc., andθ andφ are the polar angles specifying th
orientation of the internuclear vector in the principal axis syst
of the alignment tensor.

The programs currently available for solution structure
termination (2, 7–9) can use the orientational information co
tained in dipolar couplings only after the variablesDP Q

a andR
in Eq. [1] have been independently determined. For proteins
can be accomplished by measuring a large number of coupl
normalizing by type of nuclei and bond length, and plotting
data as a histogram (8). Assuming that the internuclear vecto
between coupled nuclei are randomly oriented in space,DP Q

a
and R will be related to the extrema (D11 and D33) and mode
(D22) of the histogram as follows:

D11 = −2DP Q
a [2]

D22 = DP Q
a (1− 1.5R) [3]

D33 = DP Q
a (1+ 1.5R). [4]

Clearly, the accuracy with whichDP Q
a and R are determined

depends on the accuracy of one’s estimates of the values o
mode and two extrema, which depends on the number of
plings observed and the degree of anisotropy in the orientat
of the corresponding internuclear vectors.

Spectroscopists interested in using dipolar data naturally m
sure as many dipolar couplings as possible, both to increas
number of constraints available for structure determination
to improve the accuracy with which the coupling histogram
determined. However, it is not always possible to measure l
numbers of couplings (see, e.g., (10, 11)), and in such cases
is generally impossible to accurately determineDP Q

a andR us-
ing the histogram methodology. In these cases, rounds of s
tural refinement are carried out with a number of different in
values ofDP Q

a and R, and the lowest energy structures whi
emerge are selected (9, 10). This work-around is undesirabl
for two reasons. First, it can be extremely expensive com
tationally, since a round of refinement must be undertaken
1 1090-7807/01 $35.00
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every pair ofDP Q
a andR values tested. Second, it is difficult t

deconvolute the effects that the structural model, coupling d
and parameter values will have on one another in such a pro
and it is certainly not unthinkable that the true parameter va
might not yield the lowest energy final structures. Thus an ef
tive, structure independent method for determiningDP Q

a andR
when only a modest number of couplings is available would
desirable.

It should also be noted that the quality of one’s estima
of DP Q

a and R will affect the accuracy of structures comput
using dipolar data. It is important that the method used to de
mine these parameters also estimate the errors associated
them, so that they can be taken into account during struc
refinement.

Below we describe a maximum likelihood method for d
termining DP Q

a and R from a set of couplings of any siz
that yields rigorous error estimates for both parameters.
also propose a method for using these error estimate
CNS (7), a popular program for determining solution stru
tures that includes no provision for taking such errors i
account.

METHODS AND RESULTS

Given the inherently low quality of information about the l
cation of the extrema and the mode of any distribution when
set of observed data is small, we set out to devise a techn
that uses all available data to estimateDP Q

a andR. A maximum
likelihood approach (12, 13) proved most successful. The “like
lihood function” for a set ofN couplings being observed give
a particular choice ofDP Q

a andR is

L
(
C1...N

∣∣DP Q
a , R

) = N∏
n=1

PDP Q
a ,R(Cn), [5]

whereN is the total number of couplings,PDP Q
a ,R is the probabil-

ity density function for a particular choice ofDP Q
a andR, andCn

is the value (in Hz) of thenth coupling. Because an isotropical
distributed set of dipolar coupling data will have the same sh
as a chemical shift anisotropy (CSA) powder pattern, Gra
analytical expressions for the relative intensities of CSA po
der patterns (14) are equivalent to probability density function
for the observed data (C1 . . . Cn) given particular values ofDP Q

a
andR, i.e.,

PDP Q
a ,R(Cn) =

(
1+ ( 1

2

)2
m2+ ( 1× 3

2× 4

)2
m4+ ( 1× 3× 5

2× 4× 6

)2
m6 . . .

)
2
√

(D11− D22)(Cn − D33)
,

m= (D11− Cn)(D22− D33)

(Cn − D33)(D11− D22)
, for (D11 ≤ Cn < D22)
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PDP Q
a ,R(Cn)=

(
1+ ( 1

2

)2
m2+ ( 1× 3

2× 4

)2
m4+ ( 1× 3× 5

2× 4× 6

)2
m6 . . .

)
2
√

(D11−Cn)(D22− D33)
,

m= (D11− D22)(Cn− D33)

(D11−Cn)(D22− D33)
, for (D22<Cn≤ D33),

[6]

whereD11, D22, andD33 are determined fromDP Q
a and R as

indicated by Eqs. [2], [3], and [4]. A grid search throughDP Q
a

andR is done to find the pair of parameters that maximizes
likelihood function, which is equivalent to selecting the pair
parameters that is most likely to have given rise to the coupli
observed. For convenience we use a log likelihood function
stead of equation [5], i.e.,

log
(
L
(
C1...N

∣∣DP Q
a , R

)) = N∑
n=1

log
(
PDP Q

a ,R(Cn)
)
. [7]

The values ofDP Q
a and R that maximize Eq. [7] also maxi

mize [5]. Extension of the method to sets of data contain
errors requires that the powder pattern function be convolu
with a normal distribution with the desired standard deviati
as suggested by Grant and co-workers (15). This operation is
conveniently performed by multiplying the Fourier transform
of the two functions, and then back Fourier transforming
product (16).

This approach was first tested using sets of compu
generated data that were random and completely isotropic.
each value ofDP Q

a and R, many data sets were obtained b
generating randomφ and sin weightedθ angles and, for each
combination of angles, computingDP Q (Eq. [1]). A grid search
in DP Q

a andR was then performed on each data set, calcula
Eq. [7] at each step to determine the values ofDP Q

a andR most
likely to have generated the data set. Table 1 shows the m
values ofDP Q

a and R found and their standard deviations fo
each input value ofDP Q

a , R, and data error, as a function o
sample size. The quality of fits proved to be insensitive to
value ofDP Q

a (data not shown) and, as expected for a maxim
likelihood approach, the larger the input data set, the more
mal the distributions of estimated parameters (data not sho
Also, as one would expect, the larger the number of coupli
available, the smaller the errors in one’s parameters, and
larger the errors associated with one’s coupling measurem
the larger the parameter errors that emerge. Clearly the m
mum likelihood procedure does a good job of determiningDP Q

a
andR with modest-sized sets of couplings (≥50).

As a further test of this procedure, it was used on sets of c
plings computed from known protein structures. Dipolar co

plings for various reasonable sets of internuclear vectors were
predicted using the method of Zweckstetter and Bax (17). Given
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TABLE 1
Application of the Maximum Likelihood Method to Isotropic Data

Target Target DP Q
a (calc) R (calc) DP Q

a (calc) R (calc)
N DP Q

a R error= 0.5 Hz error= 0.5 Hz error= 1 Hz error= 1 Hz

10 −12 0 −11.34± 1.47 0.065± 0.166 −11.28± 1.53 0.056± 0.147
50 −12 0 −12.01± 0.28 0.001± 0.006 −11.97± 0.38 0.001± 0.008

100 −12 0 −12.06± 0.17 0.000± 0.000 −12.02± 0.28 0.000± 0.000
500 −12 0 −12.07± 0.09 0.000± 0.000 −12.06± 0.13 0.000± 0.000
10 −12 0.2 −11.63± 2.13 0.148± 0.215 −11.60± 2.22 0.125± 0.214
50 −12 0.2 −12.06± 1.05 0.183± 0.091 −12.46± 1.23 0.125± 0.125

100 −12 0.2 −12.02± 0.40 0.185± 0.038 −12.28± 0.77 0.144± 0.093
500 −12 0.2 −12.03± 0.13 0.188± 0.013 −12.14± 0.37 0.170± 0.039
10 −12 0.4 −11.60± 2.41 0.299± 0.258 −11.66± 2.67 0.303± 0.268
50 −12 0.4 −11.81± 0.67 0.386± 0.072 −11.95± 0.72 0.376± 0.113

100 −12 0.4 −11.82± 0.38 0.404± 0.045 −11.90± 0.45 0.391± 0.056
500 −12 0.4 −12.01± 0.15 0.393± 0.019 −11.99± 0.18 0.386± 0.022

Note.For each combination of target values forDP Q
a andR, 100 sets of random data of sizeN were generated as described in the text. A grid search inDP Q

a

andR was performed on each data set withDP Q ranging from−2.5 to−20 Hz in 0.1 Hz steps andR ranging from 0 to 0.7 in steps of 0.01. The log likelihoo
a

score (see Eq. [7]) was calculated for each pair ofDP Q
a andR values and the most likely pair selected. Columns four and five give the mean most likelyDP Q

a and
quivalent

r
a
f
i
f
o

third

ix,

with
errors
R values for the 100 data sets,± the standard deviation of each value when a
to four and five, respectively, except that the data error is 1 Hz.

a protein or nucleic acid structure, this algorithm computesDP Q
a ,

R, and the orientation of the alignment tensor based on a pu
steric model for the interaction between the macromolecule
liquid crystals. These parameters, along with the structure o
macromolecule, allow dipolar couplings to be computed us
Eq. [1]. Using this algorithm dipolar data were generated
four protein structures (18–21), chosen to represent a variety

shapes, from extended to essentially spherical. Our method was

s
(
ling
indic

determined for the artificial data sets in Table 1. One hundred
ved”
then used to see if the values ofDP Q

a and R used to generate
these data sets could be recovered from them. The results of

TABLE 2
Application of the Maximum Likelihood Method to Predicted Data from Known Structures

DP Q
a R Error Set of couplings DP Q

a R
Structure (steric) (steric) (Hz) used (N) (predicted) (predicted)

tim −18.2 0.312 0.5 N-H (247) −18.4± 0.3 0.29± 0.02
calpain −12.0 0.199 0.5 N-H (173) −12.3± 0.2 0.18± 0.03
calmodulin −15.1 0.503 0.5 N-H (148) −15.1± 0.3 0.43± 0.03
jun −20.3 0.195 0.5 N-H (43) −20.5± 1.5 0.19± 0.09
tim −18.2 0.312 1.0 50% N, Cα (234) −18.4± 0.4 0.27± 0.03
calpain −12.0 0.199 1.0 50% N, Cα (167) −11.6± 0.3 0.18± 0.04
calmodulin −15.1 0.503 1.0 50% N, Cα (143) −15.1± 0.4 0.43± 0.04
jun −20.3 0.195 1.0 50% N, Cα (42) −20.6± 1.4 0.18± 0.08
tim −18.2 0.312 0.5 All (960) −18.1± 0.1 0.30± 0.01
calpain −11.8 0.194 0.5 All (678) −11.6± 0.1 0.19± 0.01
calmodulin −15.1 0.503 0.5 All (580) −14.8± 0.2 0.54± 0.02
jun −20.2 0.201 0.5 All (170) −20.0± 0.3 0.18± 0.02

Note.For each of the four known structures shown, triose phosphate isomerase (18), calpain (20), calmodulin (21), and jun (19), the same procedure wa
employed. First, if necessary, protons were added to the structures in CNS (7). Second, couplings were predicted using the algorithm of Zweckstetter and Bax17),
assuming the proteins were dissolved in 25 mg/mL phage. Predicted values ofDP Q

a andR are listed in columns two and three. The indicated subset of coup
data was used in the maximum likelihood method by first normalizing all couplings to the N–H bond length and gyromagnetic ratios, adding the errorated,

random sets of coupling data of the same size as the “obser
data set were generated using our calculated most likelyDP Q

a

and grid searching inDP Q
a andR from−2.5 to−25 and 0 to 0.7, respectively

the appropriate size,DP Q
a , R, and coupling error. In column 4, “50% N, Cα” indic

used and “All” refers to all one-bond backbone couplings, i.e., N–H, N–Cα, Cα–H
n error of 0.5 Hz is added to the coupling data. Columns six and seven are e

ely
nd

the
ng
or
f

these experiments are shown in Table 2. The second and
columns give the input values forDP Q

a and R estimated us-
ing the Zweckstetter and Bax algorithm. Our most likelyDP Q

a
andR values calculated from the data, in columns five and s
compare quite favorably.

Table 2 also includes estimates of the errors associated
each parameter. These were obtained the same way as the
. The standard deviations given are those predicted from 100 isotropic data sets of
ates that half of all possible N–H and Cα–H couplings, randomly chosen, were
, Cα–C′, and C′ (i )–N(i + 1).
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FIG. 1. A mapping procedure for transforming errors inDP Q
a andR into errors in coupling values is illustrated for a coupling of 10± 1 Hz, given aDP Q

a of
34.5± 3 Hz and anR of 0.11± 0.077. Panel A shows a subset (the values shown are mirrored on the other sides of both theθ andφ axes) of the allowed values
of θ andφ at the lower (black) and upper (gray) extreme values ofR (given the errors associated withDP Q

a and the coupling value). The couplings which would
be generated by this set of angles at the mean values ofDP Q

a andR were then determined by substitution into Eq. [1]. The center of this distribution of couplin
was taken as a new coupling value with error equal to the distance to the two extrema. In this case the adjusted value of the coupling is 10.449± 5.017 Hz. The

possible polar angles which would generate couplings within these bounds, given an errorlessDP Q

a of 34.5 andR of 0.11, are shown in B. In C the distributions in
e a subset of those in B. The arrow indicates angles allowed in B which are not allowed
e
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A (Black) and B (shaded) are overlaid. Note that the allowed angles in A ar
in A. All plots shown are equal area Sauson–Flamsteed map projections (22), aft

andR parameters, assuming that the distribution of internuc
vector orientations was isotropic. The errors in Table 2 are
standard deviations of the two parameters extracted from th
data sets. These estimates are likely to be slightly low, since
process does not account for the effects of anisotropy in the
entation of the ensemble of internuclear vectors. Nonetheles
all cases save the extended calmodulin structure (21), the target
values lie within one estimated standard deviation from the b
fit estimates. This is true, surprisingly, even in the case of the
of N–H couplings determined for Jun, a coiled-coil homodim
(19). In Jun the N–H vectors are predominantly parallel to
long axis of the coiled-coil and thus are extremely anisotrop
It appears, however, that the small number of N–H vectors
Jun that do not follow this trend are sufficient to prevent the fa
ure of the maximum likelihood method. The sevenα-helices of
calmodulin lie roughly in a plane perpendicular to the short a
of the molecule, and the positive extreme (in N–H couplin
is unrepresented. Nonetheless, the method gives a fairly c
estimate in this case as well. As expected, just as with isotro
random data, inclusion of more coupling types and larger nu
ber of couplings improves accuracy.

Clearly accurate values ofDP Q
a and R can be extracted for

sets of dipolar coupling data using a maximum likelihood a

proach, even when the number of couplings available is sm
It also appears that we can assign error estimates to the
ues of these parameters reasonably accurately. Unfortuna
r (23).
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the module that CNS uses for structure refinement with dipo
data (2, 7–9) does not make use of information about the e
rors associated withDP Q

a andR; only errors associated with the
coupling values themselves can be entered. A simple map
procedure has been devised to circumvent this difficulty, wh
is illustrated in Fig. 1. In essence one adjusts each coupling
error to allow the corresponding internuclear vector to sam
all values ofθ andφ which are consistent withDP Q

a , R, the
original coupling value, and all their associated errors. In o
experience with refinement of nucleic acid solution structu
using dipolar coupling data, structures converge quite well w
errors inDP Q

a andRof the sizes seen here and errors in coupli
data of several percent (data not shown).

DISCUSSION

We have presented a method that allows the rapid and un
biguous estimation of the parametersDP Q

a and R for a set of
dipolar couplings of arbitrary size. The method appears to
robust, in that it works when there are significant errors ass
ated with the coupling data and when the data are derived f
real protein structures where there is significant anisotropy. T
method should yield estimates forDP Q

a andR that are more ac-

all.
val-
tely,

curate than those calculated by other methods, e.g. that of Clore
et al. (8), for two reasons. First, the intrinsically low frequency
of occurrence of internuclear vectors withθ near 0 (due to the
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weighting of the population by sinθ ) is implicitly corrected for
by our methodology, as is the difficulty of estimating the mode
sparse data sets. Second, the maximum likelihood method
all data available rather than the subset which define the m
and extrema, which should make it more efficient at extract
information about the values ofDP Q

a andR. In the limit of large,
isotropic coupling sets both advantages should disappear.

Additionally we have presented a method for estimating
error associated with our most likely values forDP Q

a andR and
a mapping procedure for translating these errors into errors
sociated with couplings. This procedure allows incorporation
errors inDP Q

a andR into refinement in CNS by simply inputting
the adjusted coupling and error as “sani” restraints, and u
a harmonic potential to refine one’s structures. Algorithms
performing these various functions are available on our web
at http://proton.chem.yale.edu.
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